Напишите ответ

Введите сообщение и нажмите Отправить
Параметры

Назад

Обзор темы (новое вверху)

Mishka
2020-07-24 02:11:04

Настройка монопольной антенны выполняется простым подрезанием вибратора до нужной длины с последующим изгибом, чтобы подобрать нужную резонансную частоту. В данном случае за пару минут можно сварганить, как говорится, из говна и палок антенну на 868 МГц.

EdpTImqXYAA8HbD?format=jpg&name=4096x4096

С учетом КСВ < 2.0 можно сказать, что эта перевернутая L-образная антенна (ILA) работает в диапазоне 820-920МГц. При этом минимальный КСВ составил 1.05, обратные потери RL < -32Дб, а коэффициент отражения Г = 0.025. Даже с учетом крайне низкого качества антенны, этого должно быть достаточно для временного использования в полевых условиях.

Кстати, антенна сделана из обрезка того самого коаксиального кабеля без изоляции, который тестировался ранее. Длина вибратора - 72 мм.

Mishka
2020-07-17 15:47:40

Для настройки антенны необходимо впаиваться в радиотракт между антенной и трансивером, и для этих целей нужен высококачественный кабель малого диаметра, до 2 мм. Один из вариантов - это RG178. Еще один вариант - Molex Temp-Flex.

На днях я поехал на местный радиобазар в надежде купить что-нибудь подходящее. Однако, к моему сожалению, того, чего нужно, там нет и в помине. Наиболее близкий вариант - это RG-174 (сопротивление 50 Ом, толщина 2.8 мм). Хоть он и не подходит для моих целей, я все же купил для тестов метр кабеля Cabletech RG-174 (10 гривень). Мне объяснили, что его часто ставят на WIFI или GSM. Кроме того, для интереса взял метр какого-то неизвестного коаксиального кабеля без изоляции или, как его называют, "провод в экране" (цена 5 грн), а также разъемы SMA (по 25 грн за штуку).

Разъемы, скажу сразу, пришлось выкинуть и купить другие. Те, что на базаре, просто не работают. При сборке я стабильно получаю короткое замыкание. Собрали три штуки - все выкинули. Еще один остался на память, чтобы знать, как выглядит и больше не покупать:
EdIEDxsX0AccK5C?format=jpg&name=360x360

Пришлось отдельно заехать в "Радиомаг" и купить другие разъемы, на этот раз по 15 грн, но они оказались намного лучше. Собрал вот таких два кабеля, каждый по 1 м:

EdF5YLbXsAI7KmK?format=jpg&name=small

Итак, имеем два кабеля: кабель А и кабель Б.

Первый тест: кабель подключается к порту VNA, на другом конце устанавливается терминатор 50 Ом. При такой схеме включения коэффициент стоячей волны для идеального кабеля, рассчитанного на импеданс 50 Ом, должен быть равен единице, поскольку он определяется качеством согласования нагрузки и линии связи. По общему признанию, если кабель возбуждает стоячую волну с КСВ больше 1.22, то его использовать нежелательно. На графиках ниже отображено фактическое состояние дел; красный график - КСВ, синий график - импеданс.

Очевидно, что кабель Б имеет явно меньший КСВ и, следовательно, вносит меньше искажений. Кабель А при этом достаточно сносно работает до частоты 1.5 ГГц, но при этом бросается в глаза явное смещение импеданса с повышением частоты. Видимо, кабель А имеет слишком большую индуктивную составляющую.

EdF6jUQWAAIzOAZ?format=png&name=900x900 EdF6wK9WkAA8hb-?format=png&name=900x900

Следующий тест проверяет то, насколько качественно собраны эти два кабеля. Геометрическая форма влияет не только на импеданс, но и на фазовые задержки. Это может быть важным моментом, если используются несколько подобных кабелей одновременно, например, для нескольких антенн MIMO или Bluetooth 5.1. Для эксперимента, кабелем соединяются два порта VNA и после этого выполняется калибровка VNA. После калибровки фазовая задержка принимается равной нулю. После этого, кабель нужно подвигать, поскручивать, подергать и снова посмотреть на фазовую задержку. Идеальный кабель не меняет своей формы и новых задержек вносить не будет.

EdHxM9FXoAAhDM7?format=png&name=medium

В общем-то очевидно, что дорогой кабель стоит дорого также и потому, что он обеспечивает хорошую фазовую стабильность.

И последний тест, самый очевидный - это вносимые потери. Для этого кабель подключается к двум портам VNA и оценивается уровень сигнала после прохождения через кабель. Потери отображаются на графике. Для сравнения, неплохой кабель будет иметь это значение порядка 80 дБ на 100 метров длины, хороший - около 60 Дб на 100 метров. Оба моих кабеля длиной один метр:

EdHiGVBXkAAbefx?format=png&name=900x900

Похоже, что оба кабеля и разъемы очень невысокого качества. Что касается импеданса и вносимых помех (КСВ), кабель Б имеет явно более стабильную характеристику, однако при этом он хуже сделан физически: после скручивания он создает явно выраженную фазовую задержку. Также, для частот больших 500МГц я бы воздержался от использования кабеля Б длиннее одного метра.

В свою очередь по сравнению с Б кабель А вносит намного меньшие затухания на высокой частоте. Нужно, тем не менее, отметить, что это аж 1.5 Дб на метр на частоте 2.4 ГГц. Все-таки, кабель больше подходит для частот до 1 ГГц, где он ведет себя и стабильнее, и вносит не такие высокие потери.

Mishka
2020-07-15 14:49:18

Не совсем про NanoVNA v2, но про очередную штуку, которую можно делать на VNA - измерение длины кабелей.

Если перейти от частотной области во временную, то становятся видны уровни и импеданс в зависимости от времени прохождения сигнала до разных участков радиотракта, а, значит, и от расстояния до них.

Для эксперимента я подключил на первый порт один из SMA кабелей, которые шли в комплекте. На красном графике ниже, который отображает КСВ по времени, всплеск наблюдается через приблизительно 3 наносекунды. Это соответствует сигналу, отраженному от места обрыва кабеля, где болтается свободный конец. Если учесть, что за это время (3 нс) сигнал должен пройти до конца и обратно, и скорость света в кабеле SS405 (я не знаю, но похоже, что это он) составляет приблизительно на 0.7 от скорости света в вакууме, то можно посчитать расстояние до обрыва:

3(нс) * 0.3(м/нс) * 0.7 / 2 = 0.315 м = 31.5 см

Ec7UijQWsAEkdbA?format=png

Ec9iIFKXkAAGmjD?format=jpg&name=small

Mishka
2020-07-14 04:13:29

Кабели, что шли в комплекте расширенной поставки, похоже, тоже не так уж и плохи, тем более за эти деньги. На моем приборе коэффициент стоячей волны не превышал 1.15, а контрольный замер показал и того меньше:

Ec2T1VpXkAAi-j1?format=png

Mishka
2020-07-13 22:35:04

Впечатления, скажу я вам, самые положительные! NanoVNA v2 имеет все те же возможности, что и оригинальный NanoVNA, но только в диапазоне до так необходимых 3 ГГц (и при желании даже несколько больше - смотрите выше) и при этом с очень высоким качеством.

Вот пример для одной из антенн моего маршрутизатора Linksys EA6900:

1594656421031.jpeg

image_2020_07_13T17_57_03_190Z.png

smile

Mishka
2020-04-22 01:02:43

Не так давно вышел анализатор NanoVNA V2. Судя по всему, этот VNA прекрасно работает с частотами до 3.5 ГГц (с верхним пределом в 4.5ГГц, хотя заявлено 3 ГГц - вероятно, из-за кабелей), что дает возможность использовать его для настройки WiFi, Bluetooth, Zigbee, Thread и других 2.4 ГГц антенн. Прибор можно (иногда) купить на Tindie по цене менее $60 (шестидесяти долларов США). Хотя это никак не профессиональное оборудование, но он просто идеально подходит для настройки любительских устройств.

Если кто-то уже успел купить и опробовать в деле, пожалуйста, напишите свои впечатления!

Mishka
2020-01-17 14:13:14

Здравствуйте!

Кто-нибудь из участников форума не знает, где в Украине можно настроить радиотракт для диапазона ISM 2.4GHz? По сути нужно просто согласовать импеданс с помощью векторного анализатора цепей. Размер компонентов - 0402.

Подвал раздела